吳娜:如何實現對數學思想和數學方法的提煉的教學

時間: 2011年03月28日 來源: 美視學校 作者: 美視學校
實現對數學思想和數學方法的提煉
——我們應該做些什么?
成都美視學校數學組 吳娜 郵編:610241
 
[摘要] 要將數學知識轉化為數學能力,不是一件容易的事,老師要引導學生找到一座在知識和能力之間的橋梁,具體如何在教學中得以實現這個目標呢?本文簡述我的一點想法,最重要的便是在教學中對數學思想和數學方法的提煉。
[關鍵詞] 新課程標準 數學思想 數學方法 抽象 具體 規律
 
[正文]
對數學思想和數學方法的提煉的教學,是培養和提高學生素質的重要內容。新課標突出強調:“在教學中,應當引導學生在學好概念的基礎上掌握數學的規律(包括法則、性質、公式、公理、定理、數學思想和數學方法)。”而數學思想和數學方法是從數學內容中提煉出來的數學精髓,是將數學知識轉化為數學能力的橋梁。因此這應作為新課改中所必須把握的教學要求。
中學數學知識結構包含了辯證思想的理念,反映出數學基本概念和各知識點所代表的實體同抽象的數學思想方法之間的相互關系。數學實體內部各單元之間相互滲透和維系的關系,升華為具有普遍意義的一般規律,便形成相對的數學思想方法,即對數學知識整體性的理解。數學思想方法確立后,便超越了具體的數學概念和內容,只以抽象的形式而存在,控制及調整具體結論的建立、聯系和組織,并以其為指引將數學知識靈活地運用到一切適合的范疇中去解決問題。數學思想方法不僅會對數學思維活動、數學審美活動起著指導作用,而且會對個體的世界觀、方法論產生深刻影響,形成數學學習效果的廣泛遷移,甚至包括從數學領域向非數學領域的遷移,實現思維能力和思想素質的飛躍。
可見,良好的數學知識結構不完全取決于教材內容和知識點的數量,更應注重數學知識的聯系、結合和組織方式,把握結構的層次和程序展開后所表現的內在規律。數學思想方法能夠優化這種組織方式,使各部分數學知識融合成有機的整體,發揮其重要的指導作用。因此,新課標明確提出掌握數學思想方法的教學要求,旨在引導學生去把握數學知識結構的核心和靈魂,其重要意義顯而易見。
如何實現對數學思想和數學方法的提煉的教學呢?教師應該做些什么呢?我的看法有以下幾點:
1、結合教學大綱,就數學教材進行思想方法的教學研究
首先,要通過對教材完整的分析和研究,理清和把握教材的體系和脈絡,統攬教材全局,高屋建瓴。然后,建立各類概念、知識點或知識單元之間的界面關系,歸納和揭示其特殊性質和內在的一般規律。例如,在“因式分解”這一章中,我們接觸到許多數學方法—提公因式法、運用公式法、分組分解法、十字相乘法等。這是學習這一章知識的重點,只要我們學會了這些方法,按知識──方法──思想的順序提煉數學思想方法,就能運用它們去解決成千上萬分解多項式因式的問題。又如:結合初中代數的消元、降次、配方、換元方法,以及分類、變換、歸納、抽象和數形結合等方法性思想,進一步確定數學知識與其思想方法之間的結合點,建立一整套豐富的教學范例或模型,最終形成一個活動的知識與思想互聯網絡。
2、以數學知識為載體,將數學思想方法有機地滲透入教學計劃和教案內容之中
教學計劃的制訂應體現數學思想方法教學的綜合考慮,要明確每一階段的載體內容、教學目標、展開步驟、教學程序和操作要點。數學教案則要就每一節課的概念、命題、公式、法則以至單元結構等教學過程進行滲透思想方法的具體設計。要求通過目標設計、創設情境、程序演化、歸納總結等關鍵環節,在知識的發生和運用過程中貫徹數學思想方法,形成數學知識、方法和思想的一體化。
充分利用數學的現實原型作為反映數學思想方法的基礎。數學思想方法是對數學問題解決或構建所做的整體性考慮,它來源于現實原型又高于現實原型,往往借助現實原型使數學思想方法得以生動地表現,有利于對其深人理解和把握。例如:分類討論的思想方法和數形結合的思想始終貫穿于整個數學教學中。在教學中要引導學生對所討論的對象進行合理分類(分類時要做到不重復、不遺漏、標準統一、分層不越級),然后逐類討論(即對各類問題詳細討論、逐步解決),最后歸納總結。教師要幫助學生掌握好分類的方法原則,形成分類思想。
數學思想方法的滲透應根據教學計劃有步驟地進行。一般在知識的概念形成階段導入概念型數學思想,如方程思想、相似思想、已知與未知互相轉化的思想、特殊與一般互相轉化的思想等等。在知識的結論、公式、法則等規律的推導階段,要強調和灌輸思維方法,如解方程的如何消元降次、函數的數與形的轉化、判定兩個三角形相似有哪些常用思路等。在知識的總結階段或新舊知識結合部分,要選配結構型的數學思想,如函數與方程思想體現了函數、方程、不等式間的相互轉化;分數討論思想體現了局部與整體的相互轉化。在所有數學建構及問題的處理方面,注意體現其根本思想,如運用同解原理解一元一次方程,應注意為簡便而采取的移項法則。
3、重視課堂教學實踐,在知識的引進、消化和應用過程中促使學生領悟和提煉數學思想方法
數學知識發生的過程也是其思想方法產生的過程。在此過程中,要向學生提供豐富的、典型的以及正確的直觀背景材料,創設使認知主體與客體之間激發作用的環境和條件,通過對知識發生過程的展示,使學生的思維和經驗全部投人到接受問題、分析問題和感悟思想方法的挑戰之中,從而主動構建科學的認知結構,將數學思想方法與數學知識融匯成一體,最終形成獨立探索分析、解決問題的能力。
概念既是思維的基礎,又是思維的結果。恰當地展示其形成的過程,拉長被壓縮了的“知識鏈”,是對數學抽象與數學模型方法進行點悟的極好素材和契機。在概念的引進過程中,應注意:①解釋概念產生的背景,讓學生了解定義的合理性和必要性;②揭示概念的形成過程,讓學生綜合概念定義的本質屬性;③鞏固和加深概念理解,讓學生在變式和比較中活化思維。
在規律(定理、公式、法則等)的揭示過程中,教師應注意灌輸數學思想方法,培養學生的探索性思維能力,并引導學生通過感性的直觀背景材料或已有的知識發現規律,不過早地給結論,講清抽象、概括或證明的過程,充分地向學生展現自己是如何思考的,使學生領悟蘊含其中的思想方法。
數學問題的化解是數學教學的核心,其最終目的要學會運用數學知識和思想方法分析和解決實際問題。例如“平行四邊形的面積求法”的問題,通過探求解決問題的思想和策略,得到以化歸思想指導將思維定向轉化成求已知矩形的面積。這樣以問題的變式教學,使學生認識到求解該問題的實質是等積變換,即要在保持面積不變的情形下實現化歸目標,而化歸的手段是“三角形位移”,由此揭示了解決問題的思維過程及其所包含的數學思想,同時提高了學生探索性思維能力。在數學知識的引進、消化和運用的過程中,要利用單元復習和階段性總結的時間,以適當集中的方式,從縱橫兩方面整理、概括和提煉出數學思想方法綱要和系統。以分散方式的滲透性教學為基礎,集中強化數學思想方法教育的形式,促使學生對數學思想方法由個別的具體感悟上升到一般的理性認識,這有利于提高教學效果。
4、通過范例和解題教學,綜合運用數學思想方法
一方面要通過解題和反思活動,從具體數學問題和范例中總結歸納解題方法,并提煉和抽象成數學思想;另一方面在解題過程中,充分發揮數學思想方法對發現解題途徑的定向、聯想和轉化功能,舉一反三,觸類旁通,以數學思想觀點為指導,靈活運用數學知識和方法分析問題、解決問題。
范例教學通過選擇具有典型性、啟發性、創造性和審美性的例題和練習進行。要注意設計具有探索性的范例和能從中抽象一般和特殊規律的范例,在對其分析和思考的過程中展示數學思想和具有代表性的數學方法,提高學生的思維能力。例如,對某些問題,要引導學生盡可能運用多種方法,從各條途徑尋求答案,找出最優方法,培養學生的變通性;對某些問題可以進行由簡到繁、由特殊到一般的推論,讓學生大膽聯系和猜想,培養其思維的廣闊性;對某些問題可以分析其特殊性,克服慣性思維束縛,培養學生思維的靈活性;對一些條件、因素較多的問題,要引導學生全面分析、系統綜合各個條件,得出正確結論,培養其橫向思維等等。此外,還要引導學生通過解題以后的反思,優化解題過程,總結解題經驗,提煉數學思想方法。
要引導學生把握知識的整體結構,形成合理的數學模型,通過綜合運用數學思想方法,融會貫通各知識點和單元,建立一個以范例和習題為中心的知識網絡,縱向加深知識層次,橫向聯系以發展思維能力,形成全局性的數學思想方法。
綜合以上思考,我認為,初中數學思想方法教學應以數學知識為載體,結合教學大綱和計劃,按照啟發、吸收、消化和發展的認識規律進行總體策劃,分階段、有步驟地貫徹實施。同時,要在教材的知識結構和教學設計上不斷完善和豐富數學思想的理念和觀點,在數學知識與數學思想方法之間建立有機的結合,形成完整的系統。
 
責任編輯 黃浩軍
  
[參考文獻
            1、《數學教育學導論》 張奠宙,李士锜,李俊編著
            2、《數學教育個案學習》 李仕奇編,華東師大出版社
            3、《教育心理學》        邵瑞珍主編
            4、《中學數學教學案例》 羅增儒,陜西師大出版社
Top